
Abstract Stable isotope analyses are often used to quan-
tify the contribution of multiple sources to a mixture,
such as proportions of food sources in an animal’s diet,
or C3 and C4 plant inputs to soil organic carbon. Linear
mixing models can be used to partition two sources with
a single isotopic signature (e.g., δ13C) or three sources
with a second isotopic signature (e.g., δ15N). Although
variability of source and mixture signatures is often re-
ported, confidence interval calculations for source pro-
portions typically use only the mixture variability. We
provide examples showing that omission of source vari-
ability can lead to underestimation of the variability of
source proportion estimates. For both two- and three-
source mixing models, we present formulas for calculat-
ing variances, standard errors (SE), and confidence inter-
vals for source proportion estimates that account for the
observed variability in the isotopic signatures for the
sources as well as the mixture. We then performed sensi-
tivity analyses to assess the relative importance of: (1)
the isotopic signature difference between the sources, (2)
isotopic signature standard deviations (SD) in the source
and mixture populations, (3) sample size, (4) analytical
SD, and (5) the evenness of the source proportions, for
determining the variability (SE) of source proportion es-
timates. The proportion SEs varied inversely with the
signature difference between sources, so doubling the
source difference from 2‰ to 4‰ reduced the SEs by
half. Source and mixture signature SDs had a substantial
linear effect on source proportion SEs. However, the
population variability of the sources and the mixture are
fixed and the sampling error component can be changed
only by increasing sample size. Source proportion SEs
varied inversely with the square root of sample size, so
an increase from 1 to 4 samples per population cut the
SE in half. Analytical SD had little effect over the range
examined since it was generally substantially smaller

than the population SDs. Proportion SEs were minimized
when sources were evenly divided, but increased only
slightly as the proportions varied. The variance formulas
provided will enable quantification of the precision of
source proportion estimates. Graphs are provided to al-
low rapid assessment of possible combinations of source
differences and source and mixture population SDs that
will allow source proportion estimates with desired pre-
cision. In addition, an Excel spreadsheet to perform the
calculations for the source proportions and their varianc-
es, SEs, and 95% confidence intervals for the two-source
and three-source mixing models can be accessed at
http://www.epa.gov/wed/pages/models.htm.
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Introduction

The use of stable isotope analyses in ecology has in-
creased dramatically in the last several decades (Griffiths
1998). One use of stable isotopes is to determine the pro-
portional contributions of several sources to a mixture.
Examples of source proportion calculations include de-
termination of: various food sources in an animal’s diet
(Szepanski et al. 1999); soil carbon derived from current
and previous vegetation (Vitorello et al. 1989); water
sources used by plants (Dawson 1993); percent of N de-
rived from N-fixation (Hogberg 1997); and sources of
CO2 efflux from forest floor respiration (Lin et al. 1999).
Linear mixing models are used to estimate proportions
for two sources using isotopic signatures for a single ele-
ment (e.g., δ13C; Balesdent and Mariotti 1996), or for
three sources using isotopic signatures for two elements
(e.g., δ13C and δ15N; Phillips 2001).

To determine the relative proportion of each source to
the mixture, isotopic signatures are typically determined
for multiple samples of each source and the mixture.
Mean signature values are calculated for each of the
sources, and the fractional contributions of each source to
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the mixture are calculated using these point estimates.
Calculations may also use a mean isotopic signature for
the mixture, or perform a separate calculation for each
sample of the mixture and report confidence intervals for
fractional contributions of the sources based on this repli-
cation. However, the confidence intervals are based solely
on the variability of the isotopic signatures of the mixture,
and do not include the variability in the isotopic composi-
tion of the individual sources. In general, little effort has
been made to enumerate various factors that contribute to
uncertainty and to determine how those errors propagate
into uncertainty about the estimates of source proportions.

Veldkamp and Weitz (1994) provide a good example
of an uncertainty analysis for a two-source mixing model
using stable isotopes. They performed Monte Carlo simu-
lations to determine how variability in various parameter
estimates affected the uncertainty of estimates of the pro-
portions of soil organic matter derived from previous and
current vegetation. While they described a valuable ex-
ample of error analysis for a particular case study, it
would be useful to have an equation to provide an analyt-
ical solution for the uncertainty of source proportions,
rather than having to estimate this through hundreds or
thousands of Monte Carlo simulations for each different
case. The purpose of this paper is: (1) to provide formulas
for approximate variances, SEs, and confidence intervals
for source proportions that account for variability in the
isotopic signatures of both the sources and the mixture;
(2) to determine the sensitivity of the source proportion
variances to a variety of contributing factors over a range
of conditions; and (3) to use the results of our sensitivity
analyses to reach some conclusions about where efforts at
reducing uncertainty of source proportions should be fo-
cused. Specifically, we show how our approach is useful
for determining the required sample sizes and isotopic
signature difference between sources to obtain source
proportion estimates with a specified level of precision.

Methods

Calculating variances and confidence intervals

Single isotope, two-source mixing model

Figure 1a shows an example of the analytical situation for the single
isotope, two-source mixing problem. Random samples are drawn
from the populations of each of the sources (A and B) and of the
mixture (M). For our purposes, we assume that either there is no
fractionation in incorporating a source into the mixture, or the isoto-
pic signatures for the sources have already been adjusted to account
for this fractionation, as is frequently done in dietary analyses (e.g.,
Szepanski et al. 1999). A two-endmember linear mixing model can
be formulated from the following mass balance equations:

(1)

and the mean proportion of source A in the mixture can be calcu-
lated (Balesdent and Mariotti 1996) as:

(2)

where δ̄M, δ̄A, and δ̄B represent the mean isotopic signatures (e.g.,
δ13C) for the mixture M and sources A and B, respectively, and fA
and fB are the proportions of A and B in M. If we make the reason-
able assumption that δ̄M, δ̄A, and δ̄B are independently measured,
then a first-order Taylor series approximation of the variance of fA
evaluated at (δ̄M, δ̄A, and δ̄B) can be calculated using partial deriv-
atives (Taylor 1982) as:

(3)

which reduces to (see Appendix):

(4)

where σ2
δ̄M, σ2

δ̄A, and σ2
δ̄B represent variances of the mean isotopic

signatures for the mixture M, and sources A and B, respectively
(i.e., the square of the SEs). An approximate variance for fB=1−fA
can also be determined by switching the A and B subscripts in
Eq. 4. Approximate 95% confidence intervals for fA can be con-
structed as fA±t0.05,γ σfΑ (and similarly for fB), where σfΑ is the SE
of the proportion estimate (square root of the variance from Eq. 4),
and t0.05,γ represents the two-tailed Student’s t for α=0.05 and γ de-
grees of freedom. γ represents the Satterthwaite (1946) approxima-
tion for the degrees of freedom associated with σ2

fΑ, which can be
calculated as:

(5)

where Vi, ci, and di are the individual variance terms, their coeffi-
cients, and their associated degrees of freedom (ni-1) on the right
side of Eq. 4. Note that the mean isotopic signature and its SE for
a source or mixture may also be derived as the y-intercept (and its
SE) from linear regressions of ni points in “Keeling plots” (δ vs.
1/concentration; Keeling 1958). In this case, since the linear re-
gression is a two-parameter model, the degrees of freedom associ-
ated with this variance term in Eq. 5 should be adjusted to ni-2.
The proportions, their SEs, and their confidence intervals can also
be expressed as percentages by multiplying by 100%.

Dual isotope, three-source mixing model

An example of the analytical situation for random samples of
three sources (A, B, and C) and the mixture is shown in Fig. 1b. A
dual isotope, three-endmember linear mixing model can be formu-
lated from the following mass balance equations:

(6)

and the mean proportion of source A in the mixture can be calcu-
lated (Phillips 2001) as:

(7)

where δ̄ and λ̄ represent mean isotopic signatures for two ele-
ments (e.g., δ13C and δ15N), and the subscripts refer to the sources
A, B, and C, and the mixture M. If we again assume the indepen-
dence of the isotopic signature measurements of the three sources
and the mixture, then a first order Taylor series approximation for
the variance of fA evaluated at the mean is:

(8)
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Letting N and D represent the numerator and denominator of
Eq. 7, respectively, Eq. 8 reduces to:

(9)

While the measurements of the isotopic signatures for samples
from the mixture population and three source populations should
be independent of each other, within each population there may be
correlation of the two isotopic signatures. For example, the δ18O
and δ2H signatures in individual plant and soil water compart-
ments are often highly correlated since both H and O are found in
the water molecule. δ18O and δ2H signatures in precipitation tend
to be linearly related and fall along a meteoric water line (Dawson
1998). If the two isotopic signatures are correlated within the mix-
ture and source populations, covariance terms should be added to
Eqs. 8, 9 to account for this. Eqs. 10, 11, 12 below show the calcu-
lations for proportion variances corrected for such correlation
(σ2′

fa):

(10)

where the σδ̄,λ̄ terms represent the covariances between the mean
isotopic signatures σ̄ and λ̄ for populations A, B, C, and M. This
can be rewritten as:

(11)

where the ρ values are the correlation coefficients between the two
isotopic signatures (δ and λ) for each population (M, A, B, and C).
Again letting N and D represent the numerator and denominator of
Eq. 7, and substituting the values of the partial derivatives of fA,
Eq. 11 reduces to:

(12)

If the correlations are assumed to be zero, these covariance
terms drop out and σ2′

fA=σ2
fΑ. As in the two-source mixing problem,

approximate 95% confidence intervals for fA can be constructed as
fA±t.05γσ ′

fA, and variances and confidence intervals for fB and fC can
be calculated by switching subscripts in Eq. 9 and Eq. 12. An Ex-
cel spreadsheet to perform the calculations for the source propor-
tions and their variances, SEs, and 95% confidence intervals for
the two-source and three-source mixing models can be accessed at
http://www.epa.gov/wed/pages/models.htm.
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Fig. 1 a Partitioning of sugar
cane field soil C into contribu-
tions from sugar cane and 
soil from the previous forest
vegetation using δ13C (Vitor-
ello et al. 1989). δ13C in per
mil (‰) units is the deviation
of the isotopic ratio of the 
sample from that for a PeeDee
Belemnite standard; 
δ13C = (Rsample/Rstandard-1)×1000,
where R = 13C/12C. b Partition-
ing of dietary contributions of
moose, caribou, and salmon for
interior Alaska wolves using 
δ 13C and δ15N (Szepanski 
et al. 1999). δ15N in per mil
(‰) units is the deviation of
the isotopic ratio of the sample
from that for an atmospheric
nitrogen standard; δ15N =
(Rsample/Rstandard-1)×1000,
where R = 15N/14N. The num-
bers in parentheses are the pro-
portions as calculated from the
mean isotopic signatures for
the sources and the mixture us-
ing Eq. 4 for a and Eq. 9 for b.
Error bars show ±1 SE (inner
bars) and 95% confidence in-
tervals (±t0.05,df SE; outer bars)
for isotopic signatures
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Relationship to similar mixing models

Several alternative three-source mixing models based on Euclide-
an distance have been used in recent studies, but these have been
demonstrated to have a number of computational problems com-
pared to the linear mixing model outlined above (Ben-David and
Schell 2001; Phillips 2001) and are not recommended for use.
Some authors have used the linear mixing models outlined above,
but rather than algebraically determining exact solutions (Eqs. 2,
7), have used iterative procedures to find solutions with minimum
residuals for either the two-source model (Brunel et al. 1995;
Dawson 1998) or the three-source model (Cramer et al. 1999). If
the optimization procedure works well this method should con-
verge on the algebraic solution (zero residual) or a close approxi-
mation to it, and thus is functionally equivalent to the algebraic
method. Brunel et al. (1995) also derived separate estimates of
proportions for two sources from oxygen and hydrogen isotopic
signatures and used a minimum residual method to find optimal
compromises between the two sets of estimates.

A number of studies have used δ18O and δ2H to partition plant
use of water from various depths. While water samples may be
taken at numerous depths to determine the isotopic profile (e.g.,
Cramer et al. 1999), the samples must be combined into three
depth classes, or two depth classes if only a single isotope is used,
in order to partition water use from the different soil compart-
ments (Walker and Richardson 1991; Cramer et al. 1999).

Sensitivity analyses

The next step was to determine the sensitivity of σfA to a variety of
factors. Clearly from Eqs. 4 and 9, σfA depends on the variances of
the mean isotopic signatures for the individual sources and the

mixture, along with the signature difference between sources, and
the value of fA. In turn, the observed variability of the mean isoto-
pic signature for each source and mixture depends on both sam-
pling error and analytical error, which can be examined separately
in sensitivity analyses. Specifically, the variance for mean isotopic
signatures for source A can be written as:

(13)

where σ2
δA

is the population variance in isotopic signatures
among individual samples of source A, σ2

analytical is the analyti-
cal error variance (i.e., variance among duplicate samples), and
nA is the number of samples taken from source A. Variances for
other sources and for the mixture can be computed in the same
way.

We performed sensitivity analyses on σfA for the single iso-
tope, two-source mixing problem by varying the levels of the fol-
lowing parameters: (1) the difference in isotopic signatures be-
tween the sources (δA−δB); (2) the population SDs (σδA

,σδB
, and

σδM
); (3) the number of samples (nA, nB, and nM); (4) the analytical

SD (σanalytical); and (5) the value of fA. SDs were used in (2) and
(4) in order to separate out the effects of population variability and
sample size, which would be confounded if SEs were used instead.
Each parameter was varied individually across a range of realistic
values while the other parameters were set to default values 
(Table 1). The population SDs (σδA

,σδB
, and σδM

) were always set
equal to each other and were varied together, as were the sample
sizes (nA, nB, and nM).

Results and discussion

Example variance and confidence interval calculations

Table 2 shows the results of applying Eq. 4 to estimate
the variance of the proportion estimates for a single iso-
tope, two-source mixing problem. The example is from
Vitorello et al. (1989), who estimated the proportional
contributions of the current vegetation (C4 sugar cane)
and soil from the previous vegetation (C3 forest species)
to the soil organic carbon of young (12 year) and old
(50 year) tropical sugar cane fields. For the 50-year-old
cane field soil, the SE for the proportion estimates calcu-
lated from Eq. 4 (2.82%), that incorporates variability in
the source isotopic signatures as well as the mixture, was
nearly identical to the reported SE of 2.79% (Vitorello et
al. 1989) based only on the variability of the individual
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Table 1 Values of parameters used in the sensitivity analyses for
σ fA

. Each parameter was varied individually over the ranges indi-
cated, with the other parameters set at their default values, except
that all sample sizes were run for each parameter set. Population
SDs and sample sizes were the same for sources A and B, and the
mixture M. The results of the sensitivity analyses are shown in
Fig. 2

Parameter Symbol Mini- Maxi- Default
mum mum

Source difference (‰) δ̄A−δ̄B 2 20 10
Population SD (‰) σδA, σδB, σδM, 0.0 2.0 0.5
Sample sizes nA, nB, nM 1 10
Analytical SD (‰) σanalytical 0.0 0.5 0.2
Source proportion fA 0.0 1.0 0.5

Table 2 Example of calculation of SEs for mean proportions for
two sources (soil under previous C3 forest vegetation and C4 sugar
cane as inputs into sugar cane field soil organic carbon) using a
single isotopic signature (δ13C). Values in regular type are from
Vitorello et al. (1989); italicized values were not specified in
Vitorello et al. (1989) but were assigned to be consistent with oth-

er values provided; and values in bold type are calculated from
Eq. 4. The reported source proportion SE values from Vitorello et
al. (1989) were determined from proportion calculations on repli-
cate samples of the cane soil (SD from their Table 2 divided by the
square root of the sample size)

12 years cultivation 50 years cultivation

Cane soil Forest soil Sugar cane Cane soil Forest soil Sugar cane

δ13C [‰] (SE, SD) –23.66 –24.99 –13 –20.66 –24.99 –13
(0.16, 0.50) (0.09, 0.27) (0.09, 0.30) (0.33, 1.05) (0.09, 0.27) (0.09, 0.30)

Sample size 10 10 10 10 10 10
Source proportions [%] (SE) – reported 88.9 (1.28) 11.1 (1.28) 63.9 (2.79) 36.1 (2.79)
Source proportions [%] (SE) – calculated 88.9 (1.46) 11.1 (1.46) 63.9 (2.82) 36.1 (2.82)
95% Confidence limits (%) 85.7–92.1 7.9–14.3 57.5–70.3 29.7–42.5



mixture samples. In this case, the SEs were similar be-
cause the variation in the mixture signature (SE of
0.33‰) was 4 times greater than the variation in the
source signatures (SEs of 0.09‰). For the 12-year-old
cane field soil, the SE calculated from Eq. 4 (1.46%) was
14% higher than the reported SE of 1.28% (Vitorello et
al. 1989). While the mixture variation (SE of 0.16‰)
was still 2 times greater than the variation in the sources
(0.09‰), their variability was large enough to be reflect-
ed in the SEs for source proportions. If the SEs of the
source isotopic signatures had been equal to that of the
mixture (0.16‰), the proportion SEs would have been
1.77%, or 38% higher than when only the mixture vari-
ability was considered.

Data from the partitioning of food sources (moose,
caribou, and salmon) in interior Alaska wolves’ diet us-
ing δ13C and δ15N (Szepanski et al. 1999) are shown in
Table 3 as an example of variance calculations for a dual
isotope, three-source mixing problem assuming indepen-
dence of all isotopic signatures. Szepanski et al. (1999)
used an alternative mixing model that gave slightly dif-
ferent proportion estimates (Phillips 2001), but their re-
ported proportion SEs are used to represent the uncer-
tainty due solely to variability in the mixture samples
(individual wolves). In this example, the SEs derived
from Eq. 9 that incorporate variability in both source and
mixture isotopic signatures are much greater than their
reported values. This is because the variations in source
signatures were up to 8 times higher for δ13C and 4 times
higher for δ15N than those of the mixture. Logically, in-
creased uncertainty about the correct values for the
source isotopic signatures should increase the uncertain-
ty around the estimates for source proportions. However,
when proportion SEs are calculated in the usual way,
taking the source isotopic signatures as fixed values and
computing SEs based only on variation in the mixture
samples, the source variability has no effect on the calcu-
lation. Equation 4 and Eq. 9 take into account the contri-
bution of variability both in sources and the mixture.

The situation can also be thought of as varying the lo-
cation of the mixture isotopic signature within its confi-
dence limits inside the area bounded by its sources (e.g.,
the wolf confidence limits inside the triangle in Fig. 1b).

When the source end-members are also allowed to move
around within their confidence limits (e.g., the vertices
of the triangle in Fig. 1b), the resulting variation of the
source proportions is magnified. In the wolf example, the
95% confidence intervals from Eq. 9 for each of the food
sources are broad and overlap zero (Table 3) as a result
of this compounded uncertainty.

Sensitivity analyses

The results of our sensitivity analyses of variation in
source proportion estimates in response to various fac-
tors for the single isotope, two-source case are shown in
Fig. 2. For the range of values considered, the source
proportion SEs were most sensitive to the difference be-
tween source signatures (Fig. 2a). Specifically, doubling
the difference between sources (e.g., from 2‰ to 4‰)
reduced the uncertainty of the proportion estimates 
by half. An example of the effect of source difference 
is provided by the wolf dietary study described above
(Szepanski et al. 1999). In this example, the wolf and all
three of its food sources were within 1.9‰ for δ13C, and
the wolf and two food sources are within 2.4‰ for δ15N.
This reduced the signal size (differentiation of the isoto-
pic signatures of the mixture) relative to the background
noise (variability in the isotopic signatures of each
source) and added to the uncertainty of the proportion
estimates. Similarly, because of natural variability and
sampling error Hogberg (1997) recommended that quan-
tification of N2 fixation in ecosystem studies be attempt-
ed only when the δ15N of foliage of the reference species
deviates from that of N derived from N2 fixation by
>5‰. In some experimental situations, addition of iso-
topically labeled substrate can increase the signature dif-
ference among sources to allow better estimates of
source proportions, but this problem would still exist for
some study systems using isotopes at natural abun-
dances.

The SEs of the source proportions varied linearly with
the population SDs of isotopic signatures for the sources
and the mixture (Fig. 2b) when the population SDs were
greater than the analytical SD (0.2‰ for these analyses).
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Table 3 Example of calculation of SEs for mean proportions for
three sources (moose, caribou, and salmon in wolves’ diet in inte-
rior Alaska) using dual isotopic signatures (δ13C and δ15N). Values
in regular type are from Szepanski et al. (1999) and values in bold
type are calculated from Eq. 9. Food source isotopic signatures
were corrected for fractionation during digestion and assimilation.
The SE for δ13C for caribou was reported to one decimal place as

0.0; a value of 0.04 was assigned to represent a low, but non-zero
variability. The reported source proportion SE values from Sze-
panski et al. (1999) were determined from proportion calculations
on replicate wolves (their Table 1). The source proportions from
Eq. 9 differ slightly from those in Szepanski et al. (1999) since
they used a different mixing model

Wolf Moose Caribou Salmon

δ13C [‰] (SE) –19.6 (0.1) –20.7 (0.8) –18.8 (0.04) –18.9 (0.3)
δ13N [‰] (SE) 6.4 (0.1) 4.6 (0.4) 7.0 (0.1) 14.1 (0.2)
Sample size 50 5 41 42
Source proportions [%] (SE) – reported 35.7 (2.9) 55.2 (3.0) 9.1 (0.6)
Source proportions [%] (SE) – calculated 41.8 (18.1) 52.5 (24.4) 5.7 (6.7)
95% Confidence limits (%) 0–92.1 0–100 0–22.1



The slope of this relationship increased dramatically at
smaller sample sizes. However, the variability of sam-
ples from the source and mixture populations are fixed
and not under the control of the experimenter. Rather, the
only way to reduce the sampling error component is to
increase sample size. The variability of the proportion
estimates varied inversely with the square root of sample
size. For example, at a population SD of 2.0‰, the pro-
portion SE is 0.24 for a sample size of 1, but half that
size (0.12) for a sample size of 4 (Fig. 2b). This same re-
lationship with sample size can be seen in all four graphs
in Fig. 2. The study of wolf diets (Szepanski et al. 1999)
also provides a good example of the importance of sam-
ple size, where the uncertainty of the mean source isoto-
pic signatures is greatest for moose, due in large part to
the 8–10 times smaller sample size than for caribou,
salmon, and wolves.

The SEs of proportion estimates were not very sensi-
tive to analytical error (Fig. 2c) over the range examined
(SD of 0–0.5‰), which covers the range of typical ana-
lytical precision. This is because analytical error is gen-

erally substantially smaller than the variation among, for
instance, individual organisms or soil samples (Hogberg
1997). Similarly, the evenness of source proportions
(e.g., 50–50 vs. 90–10) had little effect on the uncertain-
ty of proportion estimates (Fig. 2d). Proportion SEs were
smallest for proportions of 0.5, but increased only slight-
ly as one source became dominant.

Our sensitivity analyses account for the effects of ran-
dom analytical error and sampling error on proportion
estimation error, but there may be additional error com-
ponents which are not explicitly considered here. For ex-
ample, dietary proportions require the use of isotopic
signatures of the food sources that are adjusted to ac-
count for the “trophic fractionation” that occurs during
digestion and assimilation. These factors are generally
determined from captive feeding experiments. Some lev-
el of random error would be associated with the esti-
mates of the fractionation factors on individual animals.
There may be systematic biases as well, if the food
source composition, and its consumption, digestion, and
assimilation in captive feeding experiments do not match
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Fig. 2 Sensitivity of SEs of
single isotope, two-endmember
proportion estimates to a the
difference in isotopic signa-
tures between sources; b SDs
for isotopic signatures in
source and mixture popula-
tions; c analytical SD; and d
the source proportion. Parame-
ter values used are given in 
Table 1. Curves are shown for
sample sizes of 1 (top curve) to
10 (bottom curve)



those in the wild, or if the food sources consumed re-
present differing proportions of the total C and N intake,
for example. Other additional error components might
include: systematic bias due to non-random, non-repre-
sentative sampling; different animal tissues reflecting in-
tegration of dietary isotopic composition over different
lengths of time; or temporal trends in source air signa-
tures affecting changes in soil carbon.

Applications

Because of natural variability of isotopic signatures and
sampling error, it has often been recommended that mix-
ing models will work best when sources are farther apart
(Dawson 1993; Hogberg 1997). Yet the utility of stable
isotopes for determining the relative importance of vari-
ous sources is also important for deciphering source pro-
portions that are less divergent in isotopic composition.
Examples of the need for mixing models across a rela-
tively small span of isotopic signatures include: (1) wa-

ter source determination in the tropics where signatures
vary across a small range in evaporative enrichment rath-
er than across a large range of fractionation with the tem-
perature of precipitation (Jackson et al. 1995); (2) use of
the dual isotope approach to determine the relative im-
portance of roots, litter, and soil organic matter (δ13C
range=2‰) for soil CO2 efflux from the forest floor (Lin
et al. 1999); (3) partitioning food sources that are similar
in signature (Szepanski et al. 1999); and (4) determina-
tion of the relative proportion of nitrogen provided via
fixation (reviewed in Hogberg 1997).

The question then, is how small a difference in source
isotopic signatures is it possible to decipher? Our sensi-
tivity analyses showed that analytical error and actual
proportion had relatively little effect on source propor-
tion error. Therefore, the minimum distance between
sources depends primarily on the source and mixture
SDs, the sample size, and the width of the desired confi-
dence interval. To determine the minimum distance be-
tween source signatures that could provide sufficiently
precise proportion estimates for a variety of systems, we
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Fig. 3 Isolines for half-width
of 95% confidence intervals for
two-endmember source propor-
tions (%) as a function of sin-
gle isotopic signature differ-
ence between sources (‰) and
observed SDs of the isotopic
signatures of the mixture and
two-source populations (‰),
for sample sizes of a n=3,
b n=5, c n=7, and d n=10. The
source proportions were fixed
at 50% and the analytical SD
was fixed at 0.2‰. Sample siz-
es were assumed to be the same
for the mixture and each
source. Confidence interval
half-widths were calculated as
t.05γσfA as described in the text
(see Eqs. 4, 5). In this figure,
the population SDs are consid-
ered to be observed (measured)
values which incorporate both
natural variability and analyti-
cal error



examined source proportion confidence intervals over a
wide range of values of source signature differences and
source and mixture signature SDs for four different sam-
ples sizes. The SDs for the source and mixture signatures
for these analyses incorporated both natural variability
and analytical error, as would be the case if one had pre-
vious signature measurements from a pilot study. The re-
sults of these analyses are shown in Fig. 3.

Comparison of source differences for various popula-
tion standard deviations showed that larger source and
mixture SDs could be tolerated and still achieve a de-
sired precision when differences between sources were
also large (Fig. 3). However, small differences between
sources could be deciphered if the source and mixture
SDs were also small, especially for large sample sizes.
Furthermore, for systems with small source and mixture
SDs and a large difference between source signatures,
Fig. 3 also provides a basis for determining whether it is
possible to reduce sample size and still attain the desired
precision.

The confidence limit isolines in Fig. 3 can be used to
estimate the confidence limits for a particular system.
For example, although it is generally considered that iso-
topic differences between sources of only 2‰ would not
be sufficient for linear mixing model, Fig. 3d shows that
for source and mixture SDs of ±0.25‰ (which approxi-
mately correspond to a range of 1‰) and a sample size
of 10 it is possible the determine the source proportion
±10% with 95% confidence. (Note that the 10% is the
actual half-width of the confidence interval and not a
fraction of the estimated proportion. That is, if the pro-
portion of source A were estimated as 40%, the confi-
dence interval would be 40%±10%, not 40%±4%.) A
specific example of this situation would be the determi-
nation of the relative importance of root, litter, and soil
organic matter (SOM) respiration for soil CO2 efflux
(e.g., Lin et al. 1999). Differences between these sources
are generally only 2‰, but the SD of each source is also
~0.25‰ (J.W. Gregg, unpublished work). In addition to
determining the relative importance of roots, litter, and
SOM for soil CO2 efflux, this information would also
provide an estimate of autotrophic respiration for calcu-
lations of NPP. Therefore estimates in the range of ±10%
could provide useful insight to the relative importance of
the different CO2 fluxes.

Determination of whether source proportion esti-
mates will be ±5% or ±50% will prevent allocation of
research to projects that are not feasible and promote
research in areas previously not considered possible.
Exact confidence limits for specific systems of interest
can be calculated using the variances from Eq. 4 and
Eq. 9 (or Eq. 12). Calculation of source proportion er-
rors may be particularly useful for systems with param-
eter values not covered by Figs. 2, 3, e.g., where the
sample sizes or SDs of the source and mixture popula-
tions are different.

Conclusions

This paper provides formulas for approximate variances,
SEs, and confidence intervals for estimates of source pro-
portions in a mixture from stable isotope analyses, for both
the single isotope two-source case, and the dual isotope
three-source case. (An Excel spreadsheet to perform these
calculations can be accessed at http://www.epa.gov/wed/
pages/models.htm.) These formulas take into account the
isotopic signature variability of both the sources and the
mixture. Typically when SEs of proportions are presented
in the literature, they reflect only the variability of the iso-
topic signatures in the mixture, and use source isotopic
signatures as if they are fixed values. Examination of sev-
eral examples from the literature indicates that reported
SEs are close to those determined from the formulas out-
lined here when the isotopic variability of the mixture is
larger than those of the sources. However, when source
variability is of equal or larger magnitude to the mixture
variability, ignoring this additional component leads to
substantial underestimates of the uncertainty of the source
proportion estimates. In addition, sensitivity analyses indi-
cate that the uncertainty of proportion estimates is affected
most strongly by the isotopic signature difference between
the sources, followed by source and mixture population
variability of isotopic signatures, and sample size. Re-
searchers can halve the uncertainty of estimates either by
doubling the difference between sources (e.g., by increas-
ing them from 2‰ to 4‰) or by quadrupling sample size
(e.g., from 1 to 4). Proportion SEs were relatively unaf-
fected by analytical error or the evenness of source propor-
tions. A priori estimation of the confidence interval widths
for source proportion estimates may expose situations
where the estimates will not be of sufficient precision to be
useful, thus avoiding wasting research effort. On the other
hand, it may also demonstrate that reasonably precise pro-
portion estimates are possible even when source differ-
ences are low, e.g. 2‰, if the source and mixture popula-
tions have low variability and sample size is sufficiently
high. This may open up research possibilities which would
have otherwise not been explored because of small differ-
ences in source signatures.
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Appendix

For the two-endmember linear mixing model (Eq. 2), the solution
(Eq. 4) to the general Taylor series equation for variance of fA
(Eq. 3) can be determined as follows

(A1)
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The partial derivatives for fA are:

(A2)

These derivatives are substituted into:

(A3)

to give:

(A4)

Factoring out the common denominator this reduces to:

(A5)

A similar process can be followed to derive Eq. 9 from Eqs. 7,
8 for the dual isotope, three-source linear mixing model.
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